Somatic embryogenesis in two cassava (Manihot esculenta Crantz) genotypes

Authors

  • Fitri YELLI University of Lampung, Faculty of Agriculture, Agronomy and Horticulture Department, Jln. Soemantri Brojonegoro No. 1 Bandar Lampung 35145 (ID)
  • Agustin TITIN University of Lampung, Faculty of Agriculture, Agrotechnology Department, Jln. Soemantri Brojonegoro No. 1 Bandar Lampung 35145 (ID)
  • Setyo Dwi UTOMO University of Lampung, Faculty of Agriculture, Agronomy and Horticulture Department, Jln. Soemantri Brojonegoro No. 1 Bandar Lampung 35145 (ID)
  • Ashutosh PATHAK University of Rajasthan, Department of Botany, Jaipur 302004, Rajasthan (IN)

DOI:

https://doi.org/10.15835/nbha51113039

Keywords:

BW-1, Cassava, NAA, picloram, UJ-3

Abstract

Plant breeding through hybridization in cassava is facing a problem due to inconsistent flowering, and also the donor genes controlling superior traits are limited. An alternative method of breeding is through genetic transformation, and regeneration via somatic embryogenesis is promising route to achieve this. As somatic embryogenesis in cassava is genotype-specific, in the present study a protocol has been developed for UJ-3 and BW-1 genotypes. Immature sterile leaves from 7-10 days axillary shoots in a pre-condition medium were used as an explant. Leaves were inoculated on Murashige and Skoog (MS) medium containing picloram (0.0, 7.5, 10.0, 12.5, and 15.0 mg/L) and 1-naphthalene acetic acid (NAA, 6 mg/L) for induction of somatic embryos (SEs). Genotype BW-1 showed best results as early callus formation time i.e. 8.04±0.32 days after induction (dai) compared to UJ-3 (8.67±2.13 dai). The callus fresh weight (0.64 g) was also higher in BW-1 than UJ-3 (0.38 g) after 4 weeks in callus induction medium (CIM), and the callus formation ranges between 85.19±3.70 to 96.30±3.70% for both genotypes. Subculturing embryogenic callus to MS+CuSO4 (4 µM) + picloram (6 mg/L) +NAA (0.5 mg/L) (SK1 medium) germinated maximum SEs in BW-1 (46.56±36.86), whereas the number was less for UJ-3 (11.89±11.90). Further, shoots were developed from green cotyledons followed by hardening and acclimatization of plantlets.

References

Anuradha T, Kumar KK, Balasubramanian P (2015). Cyclic somatic embryogenesis of elite Indian cassava variety H-226. Indian Journal of Biotechnology 14(4):559-565.

AristizabalJ, Garcia JA, Ospina B (2017). Refined cassava flour in bread making: A review. Ingenieria E Investigacion 37(1):25-33. http://dx.doi.org/10.15446/ing.investig.v37n1.57306

Bhojwani SS, Razdan MK (1996). Plant tissue culture: Theory and practice. Elsevier Press (Revised ed), New York pp 483-536.

Ceballos H, Kulakow P, Hershey C (2012). Cassava breeding: Current status, bottlenecks and the potential of biotechnology tools. Tropical Plant Biology 5:73-87. https://doi.org/10.1007/s12042-012-9094-9

Ceballos H, Rojanaridpiched C, Phumichai C, Becerra L, Kittipadakul P, Iglesias C, Gracen V (2020). Excellence in cassava breeding: Perspectives for the future. Crop Breeding, Genetics and Genomics 2(2):1-31. https://doi.org/10.20900/cbgg20200008

Corredoira E, Ballester A, Ibarra M, Vieitez AM (2015). Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna× E. maidenii trees. Tree Physiology 35(6):678-690. https://doi.org/10.1093/treephys/tpv028

Danso K, Ford-Lloyd B (2002). Induction of high-frequency somatic embryos in cassava for cryopreservation. Plant Cell Reports 21:226-232. https://doi.org/10.1007/s00299-002-0516-2

Danso KE, Elegba W (2017). Optimisation of somatic embryogenesis in cassava. In: Jankowicz-Cieslak J, Tai T, Kumlehn J, Till B (Eds). Biotechnologies for Plant Mutation Breeding. Springer, Cham pp 73-89. https://doi.org/10.1007/978-3-319-45021-6_5

Danso KE, Ford-Lloyd BV (2004). Cryopreservation of embryogenic calli of cassava using sucrose cryoprotection and air dessication. Plant Cell Reports 22(9):623-631. https://doi.org/10.1007/s00299-003-0727-1

Elegba W, McCallum E, Gruissem W, Vanderschuren H (2021). Efficient genetic transformation and regeneration of a farmer-preferred cassava cultivar from Ghana. Frontiers in Plant Science 12:1-12. https://doi.org/10.3389/fpls.2021.668042

FAO (2020). FAOSTAT Statistical Databases. Food Agric. Organ, United Nations. http://www.fao.org/faostat/en/#data/FBS

Feitosa T, Bastos JLP, Ponte LFA, Jucá TL, Campos FAP (2007). Somatic embryogenesis in cassava genotypes from the northeast of Brazil. Brazilian Archives of Biology and Technology 50(2):201-206. https://doi.org/10.1590/S1516-89132007000200004

Hapsoro DWI, Hamiranti R, Yusnita Y (2020). In vitro somatic embryogenesis of superior clones of robusta coffee from Lampung, Indonesia: Effect of genotypes and callus induction media. Biodiversitas 21(8):3811-3817. https://doi.org/10.13057/biodiv/d210849

Howeler RH (2012). Recent trends in production and utilization of cassava in Asia. In: Howeler RH (Ed). The cassava handbook. A reference manual based on the Asian regional cassava training course held in Thailand. Centro Internacional de Agricultura Tropical (CIAT), Bangkok, Thailand, pp 1-22.

Iglesias CA, Sanchez T, Yeoh HH (2002). Cyanogens and linamarase activities in storage roots of cassava plants from breeding program. Journal of Food Composition and Analysis 15(4):379-387. https://doi.org/10.1006/jfca.2002.1079

Junairiah J, Amalia NS, Manuhara YSW, Ni’matuzahroh N, Sulistyorini L (2019). Pengaruhvariasizatpengaturtumbuh IAA, BAP, Kinetin terhadapmetabolitsekunderkalussirihhitam (Piper betle L. Var Nigra) The effect of variation of growth regulating substances, IAA, BAP, Kinetin on secondary metabolites callus black belt (Piper betle L. Var Nigra. Jurnal Kimia Riset 4(2):121-132. https://doi.org/10.20473/jkr.v4i2.16898

Krajang M, Malairuang K, Sukna J, RattanapraditK, Saethawat C (2021). Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters. Biotechnology for Biofuels 14(68):1-15. https://doi.org/10.1186/s13068-021-01903-3

Ma Q, Zhou W, Zhang P (2015). Transition from somatic embryo to friable embryogenic callus in cassava: Dynamic changes in cellular structure, physiological status, and gene expression profiles. Frontiers in Plant Science 6:1-14. https://doi.org/10.3389/fpls.2015.00824

Mahadi I, Syafi’I W, Sari Y (2016). Induksikalusjeruk Kasturi (Citrus microcarpa) menggunakanhormon 2,4-D dan BAP denganmetodein vitro. Callus induction of Calamansi (Citrus microcarpa) using 2,4-D and BAP hormones by in vitro methods. Jurnal Ilmu Pertanian Indonesia 21(2):84-89. https://doi.org/10.18343/jipi.21.2.84

Marigi EN, Masanga O, Munga TL, Karanja LS, Ngugi MP, Thagana WM, ... Oduor RO (2016). Optimisation of a somatic embryogenesis and transformation protocol for farmer-preferred cassava cultivars in Kenya. African Crop Science Journal 24(1):35-44. http://dx.doi.org/10.4314/acsj.v24i1.4S

Martin KP (2004). Benzyladenine induced somatic embryogenesis and plant regeneration of Leptadenia reticulata. Biologia Plantarum 48(2):285-288. https://doi.org/10.1023/B:BIOP.0000033457.09115.f3

Mongomake K, Doungous O, Khatabi B, Fondong VN (2015). Somatic embryogenesis and plant regeneration of cassava (Manihot esculenta Crantz) landraces from Cameroon. Springer Plus. https://doi.org/10.1186/s40064-015-1272-4

Murashige T, Skoog F (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum 15(3):473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Ngugi MP, Oduor RO, Omwoyo RO, Njagi JM, Mgutu AJ, Cheruiyot RC (2015). Regeneration of Kenyan cassava (Manihot esculenta Crantz) genotypes. Journal of Plant Biochemistry and Physiology (2):1-7. https://doi.org/10.4172/2329-9029.1000147

Nic-can GI, Galaz-ávalos RM, De-la-pe C, Magaña AA, Wrobel K, Vargas VML (2015). Somatic embryogenesis: Identified factors that lead to embryogenic repression. A case of species of the same genus. PLoS One 10(6):e0126414. https://doi.org/10.1371/journal.pone.0126414

Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ (2017). Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Frontiers in Plant Science 8:1-11. https://doi.org/10.3389/fpls.2017.01780

Opabode JT, OyelakinOO, Akinyemiju OA, Ingelbrech IL (2013). Primary somatic embryos from axillary meristems and immature leaf lobes of primary somatic embryos from axillary meristems and immature leaf lobes of selected African cassava varieties. British Biotechnology Journal 3(3):283-273. https://doi.org/10.9734/BBJ/2013/3088

Ornellas TS, Fritsche Y, Medina EC, Guerra MP (2021). Somatic embryogenesis from young spikelets of the giant bamboo Dendrocalamus asper (Schult f.) Backer ex Heyne. Plant Cell, Tissue and Organ Culture 149:635-644. https://doi.org/10.1007/s11240-022-02311-7

Pais MS (2019). Somatic embryogenesis induction in woody species: The future after omics data assessment. Frontier in Plant Science 10:1-18. https://doi.org/10.3389/fpls.2019.00240

Pasternak TP, Prinsen ELS, Ayaydin F, Miskolczi P, Potters G, Asard H, ... Fehér A (2002). The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast derived cells of alfalfa. Plant Physiology 129(4):1807-1819. https://doi.org/10.1104/pp.000810

Patel SR, Joshi AG, Pathak AR, Shrivastava N, Sharma S (2021). Somatic embryogenesis in Leptadenia reticulata (Retz.) Wight and Arn along with assessment of shoot and callus cultures for HPTLC fingerprint and quantification of p-coumaric acid. Plant Cell, Tissue and Organ Culture 145:173-189. https://doi.org/10.1007/s11240-020-02000-3

Pathak A, Joshi A, Sharma A (2019). Development of shoot cultures from leaf explant of Portulaca quadrifida L. Notulae Scientia Biologicae 11(1):45-50. https://doi.org/10.15835/nsb11110332

Pinto G, Park YS, Silva S, Neves L, Araújo C, Santos C (2008). Factors affecting maintenance, proliferation, and germination of secondary somatic embryos of Eucalyptus globules Labill. Plant Cell, Tissue and Organ Culture 95:69-78. https://doi.org/10.1007/s11240-008-9417-6

Priadi D, Sudarmonowati E (2006). Pengaruh komposisi media dan ukuran eksplan terhadap pembentukan kalus embriogenik beberapa genotip local ubi kayu (Manihot esculenta Crantz) Effect of medium composition and explant size on embryogenic calli formation of cassava (Manihot esculenta Crantz) local genotypes. Biodiversitas 7(3):269-272. https://doi.org/10.13057/biodiv/d070315

Raemakers K, Pereira I, van Putten HK, Visser R (2006). Indirect somatic embryogenesis in cassava for genetic modification purposes. Methods in Molecular Biology 318:101-109. https://doi.org/10.1385/1-59259-959-1:101

Rai MK, Jaiswal VS, Jaiswal U (2008). Effect of ABA and sucrose on germination of encapsulated somatic embryos of guava (Psidium guajava L.). Scientia Horticulturae 117:302-305. https://doi.org/10.1016/j.scienta.2008.04.011

Rossin CB, Rey MEC (2011). Effect of explant source and auxins on somatic embryogenesis of selected cassava (Manihot esculenta Crantz) cultivars. South African Journal of Botany 77(1):59-65. https://doi.org/10.1016/j.sajb.2010.05.007

Saeedpour A, Godehkahriz SJ, Lohrasebi T, Esfahani K, Salmanian AH, Razavi K (2021). The effect of endogenous hormones, total antioxidant and total phenol changes on regeneration of barley cultivars. Iranian Journal of Biotechnology 19(1):30-39. https://doi.org/10.30498/IJB.2021.2838

Salma U, Kundu S, Ali MN, Mandal N (2019). Somatic embryogenesis mediated plant regeneration of Eclipta alba (L.) Hassk and its conservation through synthetic seed technology. Acta Physiologia Plantarum. https://doi.org/10.1007/s1173 8-019-2898-6

Schopke C, Taylor N, Carcamo R, Gonzalez de Schopke AE, Konan NK, Marmey P, ... Fauquet C (1997). Stable transformation of cassava (Manihot esculentaCrantz) by particle bombardment and by Agrobacterium. African Journal of Root and Tuber Crops 2(1-2):187-193.

Sholihin (2021). AMMI stability for starch yield of cassava in the acid area for determining clones’ stability. E3S Web of Conferences 306:01005. https://doi.org/10.1051/e3sconf/202130601005

Susanti I, Suharsono, Widyastuti U, Siregar UJ, Tjahjoleksono A (2017). Optimization of somatic embryogenesis induction of cassava (Manihot esculenta Crantz). Annales Bogorienses 21(2):45-51. http://dx.doi.org/10.14203/ann.bogor.2017.v21.n2.45-51

Uchechukwu-Agua AD, Caleb OJ, Opara UL (2015). Postharvest handling and storage of fresh cassava root and products: A review. Food Bioprocess Technology 8:729-748. https://doi.org/10.1007/s11947-015-1478-z

Utsumi Y, Utsumi C, Tanaka M, Okamoto Y, Takahashi S, Huong TT, ... Seki M (2022). Agrobacterium mediated cassava transformation for the Asian elite variety KU50. Plant Molecular Biology 109(3):271-282. https://doi.org/10.1007/s11103-021-01212-1

von Arnold S, Sabala I, Bozhkov P, Dyachok JA, Filonova L (2002). Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture 69:233-249. https://doi.org/10.1023/A:1015673200621

Williams EG, Maheswaran G (1986). Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Annals of Botany 57:443-462.https://doi.org/10.1093/oxfordjournals.aob.a087127

Zhang M, Wang A, Qin M, Qin X, Yang S, Su S, Sun Y, Zhang L (2021). Direct and indirect somatic embryogenesis induction in Camellia oleifera Abel. Frontiers in Plant Science 12:1-4. https://doi.org/10.3389/fpls.2021.644389

Published

2023-02-15

How to Cite

YELLI, F., TITIN, A., UTOMO, S. D., & PATHAK, A. (2023). Somatic embryogenesis in two cassava (Manihot esculenta Crantz) genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13039. https://doi.org/10.15835/nbha51113039

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51113039

Most read articles by the same author(s)