Efficient micropropagation protocol of three cultivars of highbush blueberry (Vaccinium corymbosum L.)

Authors

  • Monika FIGIEL-KROCZYŃSKA West Pomeranian University of Technology Szczecin, Department of Horticulture, Słowackiego 17 Street, 71-434 Szczecin (PL)
  • Marcelina KRUPA-MAŁKIEWICZ West Pomeranian University of Technology Szczecin, Department of Plant Genetics, Breeding and Biotechnology, Szczecin 71-434 (PL)
  • Ireneusz OCHMIAN West Pomeranian University of Technology Szczecin, Department of Horticulture, Słowackiego 17 Street, 71-434 Szczecin (PL)

DOI:

https://doi.org/10.15835/nbha50412856

Keywords:

acclimatization, highbush blueberry, in vitro, plant growth regulators, rooting

Abstract

Highbush blueberry (Vaccinium corymbosum L.) is increasingly farmed for its nutritional and health benefits, but high yield and fruit quality require proper planting material. Modified Murashige and Skoog (MW), Anderson’s Rhododendron (AN), and Woody Plant Medium (WPM) were compared for in vitro organogenesis and rooting of three highbush blueberries ‘Elizabeth’, ‘Meader’, and ‘Liberty’. All media contained 0.1 mg L-1 zeatin applied with a combination of IBA, IAA, and GA3. The results showed that MW medium is more suitable for in vitro multiplication of ‘Elizabeth’ and ‘Meader’, and WPM medium for ‘Liberty’. However, medium supplemented with a low concentration of IBA (≤ 0.4 mg L-1) and 0.1 mg L-1 zeatin increased the shoot regeneration rate of highbush blueberries multiplied in vitro. The rooting capability was studied by using WPM and AN medium with IBA and IAA with zeatin. The highest rooting rate (85%) and acclimatization (70%) were achieved in ‘Liberty’, and the lowest was in ‘Elizabeth’ (33.3% and 50%, respectively) and ‘Meader’ (33.3% and 43.8%, respectively). Rooted plantlets developed good quality roots and were transplanted into peat:perlite (4:1) substrates and acclimatized in a greenhouse under controlled conditions. We developed a complete micropropagation protocol for cvs. ‘Meader’, ‘Elizabeth’ and ‘Liberty’ blueberry. This protocol can be used for the production of certified vegetative material or different biotechnological purposes.

References

Anderson WC (1984). A revised tissue culture medium for shoot multiplication of rhododendron. Journal of the American Society Horticultural Science 109:343-347. https://doi.org/10.21273/JASHS.109.3.343

Brazelton C (2013). World Blueberry Acreage & Production, North American Blueberry Council. Database, https://static1.squarespace.com/static/

Brazelton C, Young K (2017). World blueberry statistics and global market analysis. Spring Preview for GBC. 2017 International Blueberry Organization.

Cappelletti R, Sabbadini S, Mezzetti B (2016). The use of TDZ for the efficient in vitro regeneration and organogenesis of strawberry and blueberry cultivars. Scientia Horticulturae 207:117-124. http://dx.doi.org/10.1016/j.scienta.2016.05.016

Cüce M, Sökmen A (2017). In vitro production protocol of Vaccinium uliginosum L. (bog bilberry) growing in the Turkish flora. Turkish Journal of Agriculture and Forestry 41:294-304. https://doi.org/10.3906/tar-1704-19

Fan S, Jian D, Wei X, Chen J, Beeson RC, Zhou Z, Wang X (2017). Micropropagation of blueberry ‘Bluejay’and ‘Pink Lemonade’through in vitro shoot culture. Scientia Horticulturae 226:277-284. https://doi.org/10.1016/j.scienta.2017.08.052

Figiel-Kroczyńska M, Ochmian I, Krupa-Małkiewicz M, Lachowicz S (2022). Influence of various types of light on growth and physicocemical composition of blueberry (Vaccinium corymbosum L.) leaves. Acta Scientarum Polonorum Hortorum Cultus 21(2):87-101. https://dx.doi.org/10.24326/asphc.2022.2.8

Komosa A (2007). Guide values and soil nutrient contents of highbush blueberry (Vaccinium corymbosum L.) plantations in Poland. International Conference Vaccinium ssp. and Less Known Small Fruits: Cultivation and Health Benefit. Slovak Academy of Sciences, Nitra, pp 29-30.

Kruczek A, Krupa-Małkiewicz M, Lachowicz S, Oszmiański J, Ochmian I (2020). Health-promoting capacities of in vitro and cultivated Goji (Lycium chinense Mill.) fruit and leaves; polyphenols, antimicrobial activity, macro- and microelements and heavy metals. Molecules 25(22):5314. https://doi.org/10.3390/molecules25225314

Krupa-Małkiewicz M, Ochmian I, Smolik M, Ostrowska K (2017). Comparison of propagation method in in vitro and in vivo condition of Lonicera caerulea L. Folia Pomeranae Universitatis Technologiae Stetinensis, Agricultura, Alimentaria, Piscaria et Zootechnica 334(42/2):79-88. https://doi.org/10.21005/AAPZ2017.42.2.09

Litwińczuk W, Wadas M (2008). Auxin-dependent development and habituation of highbush blueberry (Vaccinium × covilleanum But. et Pl.) ‘Herbert’ in vitro shoot cultures. Scientia Horticulturae 119(1):41-48. https://doi.org/10.1016/j.scienta.2008.07.007

Lloyd G, McCown B (1980). Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot-tip culture. Combined Proceedings of International Plant Propagators’ Society 30:421-427.

Meiners J, Schwab M, Szankowski I (2007). Efficient in vitro regeneration system for Vaccinium species. Plant Cell, and Tissue Organ Culture 89:169-176. https://doi.org/10.1007/s11240-007-9230-7

Mohamed GRA, Khusnetdinova LZ, Timofeeva OA (2018). Elaboration of micropropagation protocol for Vaccinium corymbosum cv. Sunt Blue Giant. Asian Journal of Plant Science and Research 8(5):1-11.

Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum 15:473-497.

Ochmian I, Oszmiański J, Jaśkiewicz B, Szczepanek M (2018). Soil and highbush blueberry responses to fertilization with urea phosphate. Folia Horticulturae 30(2):295-305. https://dot.org/10.2478/fhort-2018-0025

Ochmian I, Błaszak M, Lachowicz S, Piwowarczyk R (2020). The impact of cultivation systems on the nutritional and phytochemical content, and microbiological contamination of highbush blueberry. Scientific Report 10:1-14. https://doi.org/10.1038/s41598-020-73947-8

Ostrolucká MG, Gajdošová A, Libiaková G, Hrubíková K, Bežo M (2007). Protocol for micropropagation of selected Vaccinium spp. In: Protocols for Micropropagation of Woody Trees and Fruits. Springer, Dordrecht, pp 445-455.

Ostrolucká MG, Gajdošová A, Ondrušková E, Libiaková G (2009). In vitro propagation of several Vaccinium corymbosum L. and Vaccinium vitis-idaea L. cultivars. Latvian Journal of Agronomy/Agronomija Vestis 12.

Podymniak M (2015). Zbiory borówki na finiszu (in Polish). Retrieved 2021 August 12 from: http://jagodnik.pl/zbiory-borowki-na-finiszu

Ružić D, Vujović T, Libiakova G, Cerović R, Gajdošova A (2012). Micropropagation in vitro of highbush blueberry (Vaccinium corymbosum L.). Journal of Berry Research 2(2):97-103. https://doi.org/10.3233/JBR-2012-030

Schuchovski CS, Biasi LA (2019). In vitro establishment of ‘Delite’ rabbiteye blueberry microshoots. Horticulturae 5(1). https://doi.org/10.3390/horticulturae5010024

Sedlák J, Paprštein F (2009). Micropropagation of highbush blueberry cultivars. Latvian Journal of Agronomy 12:108-113.

Tetsumura T, Matsumoto Y, Sato M, Honsho C, Yamashita K, Komatsu H, ... Kunitake H (2008). Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Scientia Horticulturae 119(1):72-74. https://doi.org/10.1016/j.scienta.2008.06.028

Vescan LA, Pamfil D, Clapa D, Fira A, Sisea CR, Pop IF, Perticele IV, Ciuzan O, Pop R (2012). Efficient micropropagation protocol for highbush blueberry (Vaccinium corymbosum L.) cv. ’Elliot’. Romanian Biotechnological Letters 17(1):6893-6902.

Published

2022-12-12

How to Cite

FIGIEL-KROCZYŃSKA, M., KRUPA-MAŁKIEWICZ, M., & OCHMIAN, I. (2022). Efficient micropropagation protocol of three cultivars of highbush blueberry (Vaccinium corymbosum L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(4), 12856. https://doi.org/10.15835/nbha50412856

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha50412856